Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice

نویسندگان

  • Huong Mai Nguyen
  • Kaori Sako
  • Akihiro Matsui
  • Yuya Suzuki
  • Mohammad Golam Mostofa
  • Chien Van Ha
  • Maho Tanaka
  • Lam-Son Phan Tran
  • Yoshiki Habu
  • Motoaki Seki
چکیده

High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS) signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12). A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX), were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3'-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2) content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty.

Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought toleranc...

متن کامل

Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms

Aluminum (Al) rhizotoxicity is one of the major environmental stresses that decrease global food production. Clarifying the molecular mechanisms underlying Al tolerance may contribute to the breeding of Al-tolerant crops. Recent studies identified various Al-tolerance genes. The expression of these genes is inducible by Al. Studies of the major Arabidopsis thaliana Al-tolerance gene, ARABIDOPSI...

متن کامل

Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.

Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative t...

متن کامل

Protective effect of exogenous nitric oxide on alleviation of oxidative damage induced by high salinity in rice (Oryza sativa L.) seedlings

To find the protective role of exogenous nitric oxide (NO) on salinity-stressed rice seedlings, a CRD-based factorial experiment with three replications was conducted in Agronomy Laboratory of the Faculty of Agricultural Sciences, University of Guilan, in 2012. The experimental design consisted of healthy and vigorous seedlings of two rice cultivars, Khazar and Goohar, the last already known as...

متن کامل

Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2

Reactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H(2)O(2)-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017